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ABSTRACT

It that confidence regions constructed by the repeated-sampling

principle are asymptotically valid for sequential designs in general linear III
models and nonlinear parameters.- The related questions of consistency of

parameter estimators and convergence of sequential design to an optimal design

are answered positively. An empirical finding of Ford and Silvey (1980) is

given a theoretical justification.
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SIGNIFICANCE AND EXPLANATION

For estimation of parameters in nonlinear models or nonlinear parameters

in linear models, sequential design of experiment is often used to best

utilize the information. It results in saving the number of runs. After the

termination of the experiment with a fixed sample size, inference (such as

hypothesis testing or confidence interval) about the parameter is made. The

classical repeated-sampling principal of inference can not be applied because

it relies on the repetition of the same design while in the sequential setting

it is not repeatable. By using the martingale as a technical tool, it is

shown that, at least for large samples, such inference is still justified.

The companion questions of consistency of parameter estimators and convergence

of sequential design to an optimal design are also answered.
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ASYMPTOTIC INFERENCE FROM SEQUENTIAL DESIGN IN A NONLINEAR SITUATION

4C. F. J. Wu

I INTRODUCTION

A major difficulty in designing a nonlinear experiment is that the

performance of design depends on the unknown parameters. To utilize the

information fully, the experiment has to be conducted sequentially. The

choice of the next design point is determined by the estimate of the

unknown parameters based on the observations made to date; see, for

example, Box & Hunter (1965). Since the data thus generated are dependent

and the design points are not repeatable, it is not clear whether the

repeated sampling principle of inference can be applied here. Similar

inferential questions also arise in other contexts (Cox, 1982; Siegmund,

1980).

Ford & Silvey (1980) studied this question in a special example.

Their simulation study indicates that standard confidence intervals,

constructed by pretending that the design points were predetermined,

perform very well. In 12 we provide a theoretical justification of this

empirical finding. In 13 we consider the general problem of sequential

design and inference when the parameter of interest is a nonlinear smooth

function of the linear parameters in a general linear model. Three issues

to be studied are:

(A) consistency of the parameter estimator;

(B) asymptotic validity of the standard procedures for confidence

region;

(C) convergence of the sequential design, properly normalized, to

an optimal design.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Details are in 13. The answer to them is yes under quite weak

conditions. Crucial to our investigation is a martingale structure

underlying the problem. Issue (ii) in small samples was studied in an

unpublished manuscript by Ford, Titterington & Wu.

2. A SIMPLE EXAMPLE

Ford & Silvey (1980) considered the design problem for estimating

the nonlinear function g(e) - - e1/(262) in the linear model

yW - 1 U + e22 + e - eTv + e, v - (u,u2)T

where y is an observed response corresponding to a control variable

at level u, u e [-1,1], and e is an independent N(0,1) error.

Take the first two observations at u - *1. For r ) 2, let 8 -r

(01,02) be the maximum likelihood estimator of 0 based on the

first r observations, A ,(Or)u and Jr = v v, +...+ VrVT  be

the corresponding information matrix, vr - (Ur,u) T. By maximization

A A A

of the Gateaux derivative at r of the Fisher information of 9r,

the next design point ur+1 is chosen, from (-1,1], to maximize

T1 2 T
dr~~in -1 ) I cg = (1, 2g)

dr(U ) = (vTjr c Or)2 g (,2

It turns out that ur+1 must be I or -1.

Suppose that, among the first n observations, an are taken

at u - -1 and n -sn at u - I with their means denoted by y_

and y+. Note that On is random. Ford & Silvey (1980) showed that

Y+ + 2 + 81 Y- + f2 - 02 - 81 , (2.1)

with probability 1 and

sn/n n8(-1) 1 - 88(1) - 1e2+611/(182+011 + I82-ell) , (2.2)
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which is the probability placed at -1 by the optimal continuous

design In that minimizes CT M-(n)c over n, where M-(n) is a
g g

g-inverse of the normalized information matrix M() - E(vv T ) with

n being a probability measure on u over (-1,1]. Note that M(n)
11 *

in singular if and only if Ig()j - -I. For g(e) - -1 *(-1) 1;

for g(e) - ()- 1. The strong consistency of the maximum

likelihood estimator

8n = (en1'n2' (-+ -Y, 7-+ + .) e (2.3)

follows from (2.1).

Can confidence intervals for g be constructed in the usual

manner? The answer is not so obvious since the observations are

dependent as a result of the sequential generation of the design

points. Repeated sampling of the sequential design results in

different choices of the design points {u r1, which makes the

distribution calculus quite intractable. If the pretence were made

that the design was chosen a priori, standard theory would give

(Ford & Silvey, 1980, (5.2))

S;*-I( T 1 c )1/2 (2.4)

as an approximate 95% confidence interval for g. An alternative to

(2.4) is to replace Jn by nM(i. ) since, from (2.2),
Sne

J/n + M(n). The two versions are asymptotically equivalent. The

latter was shown to perform remarkably well in the empirical study of

Ford G Silvey (1980). The empirical percentage coverages of the true

parameter are quite close to 95%. A theoretical justification for

(2.4) is now in order.

-3-



From (2.3) and Jn/n + M(no), the asymptotic validity of (2.4)

can be established via the asymptotic normality of the normalized

statistic

(202) l(cTg N(ii)cg)1/2 N(0,1) . (2.5)

We shall give the proof separately for singular and nonsingular

1 1

First consider g(e) - - 7" The treatment of g(l) - is

similar. Since 0 262 and *2 - 0, the numerator of (2.5) equals
n(_ - y)/c), wh can be approximated b y (2

* 122-1

via (2.1). Since ni8(-1) - 1, the denominator of (2.5) is (26

and (2.5) can be approximated by n y_, whose asymptotic normality

follows from the central limit theorem on 1sn y and

sn/n * rj6(-I) - 1. Here we use the fact that, given an, the

observations taken at u = -1 are independent and identically

distributed.

or Ig(e)l #-I, a more general result will be proved. Note

that

gn (Y-C7 -Y+)7 +- Y+) " Y+, y_)

is a smooth function of y_ and y+. Similarly, g - A(, ,#2),

where #1 = Ey+, *2 ' Ey. From the smoothness of A and (2.1), the

asymptotic distribution of in(gn - g) is given by that of its first

order approximation

A (,)v'(y.-,)++,)(_-% (2.6)

where AI(*) and A2(f) are the partial derivatives of & at
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(011,2) with respect to 0, and 02. The denominator of (2.5)

equals

A 2 + A 2 1/n (-1) (2.7)

Therefore, (2.5) would follow from the asymptotic normality of the

ratio of (2.6) and (2.7), which is an easy consequence of

2 a2

in- ally - 12) + /n ay+ -*O, I + *"2 ( (2.8)N ell I  ne(-1)

in distribution for any a, and a2, whose proof is given in the

Appendix.

It is obvious from the arguments that the normality assumption

on e in the linear model is not essential.

3. GENERAL PROBLEM

The above example is simple and special in that the observations

are always taken at u - 1. Similar results will be obtained in this

section for a more general problem under additional assumptions.

We consider the general linear model

y - xTe + C

where 8 is a p x 1 vector, and the design variable x can be

chosen anywhere within a bounded design region X. Assumptions on £

are given in (3.3). The q x I vector parameter of interest is * -

g(e), which is a nonlinear smooth function of 6. Let n  be the

least squares estimator of 8 based on the first n observations

(yj,xi). The variance-covariance matrix of *n g( n) is approxi-

mated by 2 neTM'g, l)l where - x ++ XnXT  and g'(9)

-5-
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is the derivative of g. The next design point xn+1 is chosen

from x e x to minimize

*(. +xx'.A - *(g'n(O )(14 + -x ) ' 1 (3.1)

where the "optimality criterion" + is a scalar function. For the

example in 12, q - I and # is the identity map. Another choice

of xn+ I is to minimize the Frfchet derivative of 6 at N and

n in the direction xxT (Silvey, 1980), that is,n

lia X [{(1-)1m + XxxT, 0 -(M ') (3.2)+  n n n n

The next response Yn+I is observed at xn+1  and n+1 is defined

similarly. Since the (yn} are dependent, it is not obvious that

standard results in linear model theory still hold. Three major

issues to be studied are:

(A) Consistency of n : Does 8 + e with probability I?
n n

(B) Asymptotic distribution of en: Does (e -e)TMn (0 n - ) + a 2  in

distribution?

ConsistncyEof T^A22T2
Consistency of a (yxi'n) /(n-p) + a with

probability 1?

(C) Convergence of n Mn to an optimal design: Does n' Mn + Del

where D8 = D(n*) is an optimal design minimizing

(le) T Dln)g'(O)) over the normalized information matrix

D(I) - fX xxTnl(xl) fx n l dx l = I?

Note that (A) implies the consistency of * n to * and (B)

implies the asymptotic validity of the standard confidence ellipsoid

for e, where Fa  is the upper a point of the F distribution:

A T A -2 -1
(6 ( -9) 14 (e n-6)0 p (n-p)F (pn-p) •

-6-
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A
The interpretation of (C) will be given for a special case. Take

the optimality criterion to be the average of the asymptotic variances

of the components of , that is, f in (3.1) is the trace oi a
n

matrix. (C) says that the average variance of for the design
;n

NI,...,xn } Iis minimized as n + w.

Questions (A) and (B) will be studied for more general sequential

generation rules. Let Xn+ 1 be an arbitrary measurable function of

the past, (xjYj,..,Xn,yn). We assume that, for all i,

E( i e 1 ,...,i.I) = 0, E(: c '_) = 2 < (3.3)

2
that is, ei is a martingale difference sequence with v~riance 0 2

We also assume that for some 6 > 0, with probability I
1+5 .

{log max (n) /A min(n) + 0 , (3.4)

where Amin(n) and max (n) are the minimum and maximum eigenvalues

of the random matrix Mn. Property (3.4) implies Xmin(n) + -. Under

(3.3) - (3.4), the strong consistency of e to 0 follows fromn

Corollary 3 of Lai and Wei (1982). This answers (A).

Before studying (B), we point out an underlying martingale

structure that explains why standard asymptotic results for the fixed

design problem hold for the sequential design problem under consider-

A -1
ation. In -e Mn(xI +...+ x nn ), E xiEi is a martingale

since xi is a function of the pest and ci is a martingale

difference sequence. With the imposition of the growth rate condition

(3.4) on xi, the consistency of On follows from a martingale

* strong law of numbers. For the asymptotic normality of 8n# the

following stability condition on the random matrix Mn: there exists

-7-



a non-random positive definite matrix Bn such that

-n + I and max xT B 2 x 0 in probability, (3.5)

ensures that n - 9 can be approximated by - E x whose

asymptotic normality follows from a martingale central limit

theorem. Note that the stability condition (3.5) is considerably

weaker than the objective in (C) that Hn/n converges to an optimal

design matrix.

Uader (3.3) and (3.5), the asymptotic normality of 9n, i.e.

m2 2(-9) N (^a -9) + Y follows from Theorem 3 of Lai & Wei (1982).n n n

Under (3.3), the strong consistency of ;2 in (B) follows from Le-a

3 of Lai & Wei, whose only regularity condition, n'11og max (n) + 0

is satisfied since the design region is assumed bounded. Therefore,

the standard confidence ellipsoid for 6 is asymptotically valid

under (3.5). The validity of the confidence region for * obtained

from the confidence ellipsoid for 9 by the g transformation needs

the additional condition (3.4), which ensures the consistency of

en. A confidence ellipsoid for * can be constructed directly asn A

T T-1 1A^ -1A A^2 -1(4: (4'-W) [g'(9n) 4 g'(en)- (4' -*)a ( q (n-p)F (qn-p)}
*n n n n n-0

Its asymptotic validity can be established from (A) and (B) under

(3.3) - (3.5) as before.

We have answered questions (A) and (B) for very general rules

that satisfy (3.3) - (3.5), which are, however, not easy to verify.

For the simple example of 12, these conditions are either satisfied or

J . not required. For general problems further discussions are given

4. later in connection with (C).

% ,
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We now consider question (C). If the normalized matrix n Mn

converges to a nonsingular optimal design matrix D , it ensures that

the conditions (3.4) - (3.5), required for (A) and (B), are satisfied.

The updating of Mn is governed by

(n+1) 1 Mn = {-(n+l) 1 )}n- 1M +(n+1)x T
+1 (n1 n n+1Xn+ , (3.6)

where xn+l is chosen according to (3.1) or (3.2), which depends on
the current estimate 6 • In the case where the criterion (3.1) or

n

(3.2) is evaluated at the true parameter 6, the algorithm (3.6) has

been studied extensively and the convergence of n-lMn to D* was

established for * = determinant (Wynn, 1972; Pazman, 1974) and * -

trace (Wu & Wynn, 1978), assuming that D is nonsingular. By a

continuity argument, if n converges to 8 with probability 1,

the n-1*then n-l in (3.1) or (3.2) converges to Do with probability

1, for the same criterion. Since D is assumed nonsingular, the

1above result does not cover the example in §2 with Ig()j =T

The strong consistency of e , essential for the above argument,

depends on the growth rate condition (3.4) on the random matrix n'

which is not automatically satisfied by the selection rules (3.1) or

(3.2). To ensure (3.4), the rules have to be modified so that the

minimum eigenvalue of Mn grows to infinity at a rate no less than
1+6

(log n) for some 6 > 0. That means, occasionally, we have to

switch from (3.1) or (3.2) to a rule that maximizes the minimum

eigenvalue of the augmented design matrix. The strong consistency of

O is then guaranteed. It would be interesting to see if the
n

convergence results for n-lMn cited above still hold for the

modified rules. It would then imply (3.5) and the asymptotic validity

-9-
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I
of the standard confidence regions. That is, (A), (B) and (C) would

all be satisfied for such rules. AI

-10
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Appendix

Proof of (2.8)

From (2.2), the left-hand side of (2.8) can be approximated by

a(n 1-1/2 (nsn )-1/2 ' (Y +1 ) +;"~~~~ jlrO1 :n+

(A.1)
: " ~ ~~~a'(- ) -1/2s-1/2 n j! y::-

Since, given Sn' Yj+ - 0, and Yj. - 0'2 are independent and

identically distributed, (A.1) with on replaced by cn = nT8(-1)

converges to the right-hand side of (2.8) from the central limit

theorem. It remains to prove that in probability,

t 1/2 Sn 1/2 c 0- cI 2 .n m - ( y) _-c2 +0, (A .2 )

and a similar expression for n - an' (A.2) follows easily from

Sn/Cn + 1 and the boundedness in probability of

-1/2 Nand (1/2 n (y.
n J8 n

%n

z] .y 2Siand (n.
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